

Rapport Report

Haukadalsbót, Arctic Sea Farm B-bottom survey, August 2021 (maximum biomass survey)

Akvaplan-niva AS: APN 63315.B01

Akvaplan-niva AS Akralind 4, 201 Kópavogi www.akvaplan.niva.no

Information client							
Title	Haukadalsbót, Arctic Sea Farm. B-bottom survey, August 2021						
Report number	APN-63315.B01						
Site name	Haukadalsbót	Coordinates site	65°53.342 N				
			23°35.871 V				
County	Ísafjarðabær	Municipality	Þingeyri				
MTB-or estimated max	5.000 ton	Site manager/contact	Steinunn Guðný				
biomass			Einarsdóttir				
Client name	Arctic Sea Farm						

Biomass/production/status at date of survey							
Biomass at date of survey	3.759 ton	Feed	use	4.699			
Fish type	Salmon	Salmon Amou		3.730			
Type/time of survey	Mark with X		Comments				
At maximal biomass see kap 7.9	\boxtimes						
A follow up survey							
Half maximal biomass							
Survey prior to putting out smolt							
A pre-survey new site							
Other							
Last fallowing period:							

Results from B-survey iht. NS 9410:2016 (main results)							
Parameters and indexes Parameters and site status							
Gr. II. pH/Eh	0,31	Gr. II. pH/Eh	1				
Gr. III. Sensory	0,72	Gr. III. Sensory	1				
GR. II + III	0,51	GR. II+ III	1				
Date field work	26.08 2021	Date report	16.11.21				
Site status (NS 941	1						

Report writing and project leader	Snorri Gunnarsson	Signature	Inoni fumerow
Quality control	Arnþór Gústavsson	Signature	Arnbor Giustavisson

© 19.05 2019 Akvaplan-niva AS. Rapporten kan kun kopieres i sin helhet. Kopiering av deler av rapporten (tekstutsnitt, figurer, tabeller, konklusjoner, osv.) eller gjengivelse på annen måte, er kun tillatt etter skriftlig samtykke fra Akvaplan-niva AS.

Table of contents

PREFACE	2
1 INTRODUCTION	3
2 PROFESSIONAL PROGRAM AND METHODS	4
2.1 Field equipment	4
3 SITE DESCRIPTION AND BOTTOM TOPOGRAPHY	5
3.1 Info site operation	5
3.2 Present and past site surveys	
3.3 Dispersing current	
3.4 Position of sampling stations	
4 RESULTS	8
5 CONCLUSION	9
6 REFERENCES	10
7 APPENDIX:	11
7.1 Sheet (B.1 og B.2) NS 9410:2016	11
7.2 Pictures of samples at Haukadalsbót	
7.3 Bottom topography and 3D view	

Preface

The survey is carried out according to guidelines in NS 9410:2016 which includes evaluation of sediment, faunal investigation and bottom topography. The environmental survey is regulated by § 35 in the Norwegian «akvakulturdriftsforskriften. The survey also fulfills the requirements regarding bottom surveys in the standard ISO 12878.

The primary objective of a B-survey is to fulfil the requirements regarding bottom survey in the local impact zone as they are defined in NS9410:2016. The estimated max biomass for the current generation farmed salmon at the site Haukadalsbót is 5.000 MTB ton. There is a requirement of at least 15 sampling stations within the mooring lines of the fish farm. The methods applied in this survey follow guidelines in chapter 5 (NS6410:216) and fulfil the requirements described in ISO 12878. Requirements that samplings stations should be placed just beside the cages or under cages that have been used is fulfilled.

The following have participated in the survey:

Snorri Gunnarsson	Akvaplan-niva AS	Prosjektleder.		
Snorri Gunnarsson	Akvaplan-niva AS	Fieldwork and Report. Charts (Olex).		
Arnþór Gústavsson	Akvaplan-niva AS	Quality assurance		

The sampling at Haukdalsbót was done 26.08 2021.

Accredited survey:

The following parts of the survey are done in accordance with accreditation methods:

Sampling and treatment of sediment samples, analysis of samples and evaluations of the results. It should be pointed out that as Icelandic officials have not set standards regarding different parameters based on samplings at Icelandic conditions so the site characters in this report should be interpreted with that disclaimer in mind.

Akvaplan-niva AS er akkreditert av Norsk Akkreditering for prøvetaking og faglig vurderinger og fortolkninger, akkrediteringsnummer TEST 079.

Akkrediteringen er iht. NS-EN ISO/IEC 17025

Akkrediteringen omfatter bla. NS 9410, NS-EN ISO 5667-19 og NS-EN ISO 16665.

Akvaplan-niva AS thanks Arctic Sea Farm and their personnel for the cooperation during the conductance of this site survey.

Kópavogi 16. november 2021

Snorri Gunnarsson Project manager

1 Introduction

The sampling date for the present site survey was 26.08 2021 and done by Akvaplan-niva AS contracted by Arctic Sea Farm in relation to the company's fish farming activity at the site Haukadalsbót in Dýrafjörður, Ísafjarðabær municipality.

The objective of the B-survey is to document the environmental condition of the local impact zone of the fish farm according to NS 9410:2016 (and ISO 12878) which includes condition of the seabed, faunal evaluation and bottom topography registration.

The survey gives an estimate and evaluation of the site condition regarding organic load and feasibility assessment of the site for fish farming activity.

Figure 1 shows map of the fjord system of southern part of Vestfirðir where the site Haukadalsbót is located.

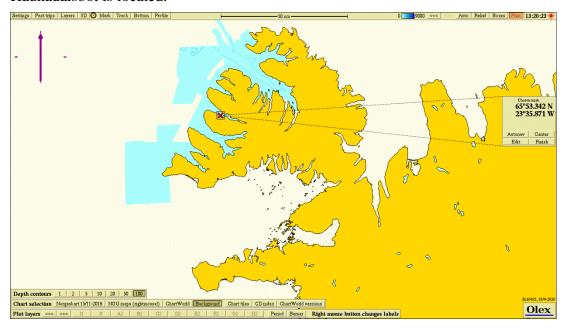


Figure 1. An overview map with the Haukadalsbót site market by its name with a red cross.

2 Professional program and methods

Environmental monitoring of the impact from the fish farming activities on the seabed is a standardised system. All fish farming sites in the sea are to be regularly assessed. The methods for monitoring in Iceland, are based on description in the ISO 12878 standard and methodology described in the NS 9410:2016 is followed. The Icelandic Environmental agency (Umhverfisstofnun) can also set forward specific requirements regarding frequency of samplings for different fish farming sites that can overrule the requirements in the abovementioned standards.

The B-survey is a trend study of the benthic conditions at, or in close proximity, to the fish farming site (local impact zone). Sediment is collected by use of grab (min 250 cm²). Each grab sample is investigated with regard to three observation types of benthic characters; faunal parameters, chemical parameters (pH and redox potential) and a sensory evaluation (gas bubbles, smell, texture, colour and the thickness of the precipitated slam layer in the sediment. The different benthic parameters are given a character on the scale from 1 to 4 (see Table 1), according to the scale of the impact on the benthic conditions from organic load, see criteria in Table 1 and it is the weighted average for all the sampling stations that gives the sites condition. The number of sampling stations are decided based on the estimated max standing biomass for the given year class for farmed fish at the site.

Table 1. Frequency of category B-research for the location of the farm based on state of the defined farming area.

Site condition at the time of sampling	Sampling frequency for B-surveys (NS 9410:2016)
1-very good	At next max biomass
2-good	Prior to putting next generation into sea and again at next max biomass.
	Prior to putting next generation into sea. Based on the site condition prior to putting next generation into sea:
3-bad	 Condition 1 – next site survey at next max biomass Condition 2 – next site survey at next 50% max biomass and at max biomass Condition 3 – next site survey at next 50% max biomass and at max biomass. Some conditions should apply for farming of next generation at the site
	If any of the samples result in character 4 it is a sign of overload.
4-very bad	Overload

2.1 Field equipment

The following field equipment was used during the site survey:

Grabb: Van Veen grabb (0,1 m²) Sieve 1 mm: Akvaplan-niva

pH meter: Electrode, YSI Professional Plus Redox-meter: Electrode, YSI Professional Plus Position determination—Garmin GPS mapping tool.

Digital camera

3 Site description and bottom topography

3.1 Info site operation

Haukadalsbót site is coming to an end of the third production cycle at the current location. The first generation of salmon at Haukadalsbót was farmed from August 2012 to late fall 2014. The second generation of rainbow trout was farmed from spring 2015 until late 2016 early year 2017. The current generation of salmon was put into sea is May/June 2020.

The fish farm at the site is a two frame mooring system, each frame having 6 cages (160 m circumference), or a total of 12 cages at the site. The standing biomass on the date of sampling was 3.759 tonnes. Table 2 shows the production and feed usage for the present generation.

Table 2. Production and feed usage at the site Haukadalsbót, data is based on info given from the fish farmer.

Generation of fish (G)	Production (ton)	Feed usage (ton)		
Generation 2012-2014 A. salmon	1.000 ton (approx.)	1.000 ton (approx.)		
Generation 2015-2017 rainbow trout	1.900 ton (approx.)	-		
May/June 2020	3.730	4.669		

3.2 Present and past site surveys

Akvaplan-niva has previously done one B-survey in March 2020 at Haukadalsbót at fallow period, prior to putting out current generation (Gunnarsson, 2020). The results from the B survey at fallow gave overall site condition 1 «very good». In general, there was soft bottom in the whole local impact zone exceptions for three stations located in the northern part of the local impact zone where only a small sediment sample could be collected.

Table 3. Past site studies for Haukadalsbót site

Date of sampling	Report number	Survey type	Overall site status
25.03.2020	APN-62024.B01	B survey, fallow period	1

3.3 Dispersing current

Measurement of dispersing current has been done at the site at 32 m deep in October and November 2019 (Gustavsson, 2019). Dominating current (28 m) is in direction south-east (160-170 degrees). Average current speed is measured to be 6.0 cm/s. Highest current speed is measured to be 21 cm/s and 3.6 % of the measurements are < 1 cm/s.

3.4 Position of sampling stations

Description of the 16 stations in the survey is given in Figure 2 and Table 4. Positioning of the stations was chosen based on guidance and perimeters described in NS 9410:2016 2016 and the bottom typography and planned configuration of the farm. At the Haukadalsbót site the typical depth in the local impact zone is in the range from 25 - 35 m, with the shallowest parts in the

south part (closest to land) and more depth in direction into the middle of the fjord. The placement of sampling stations were chosen to give a good picture of the whole local impact zone. It is important to evaluate the status in both the deeper and shallower parts of the local impact zone of the fish farm. The sampling stations had a depth varying from 29 m to 35 m. The placement of the sampling stations is regarded to be in accordance with the descriptions for survey of local impact zone given in NS 9410:2016.

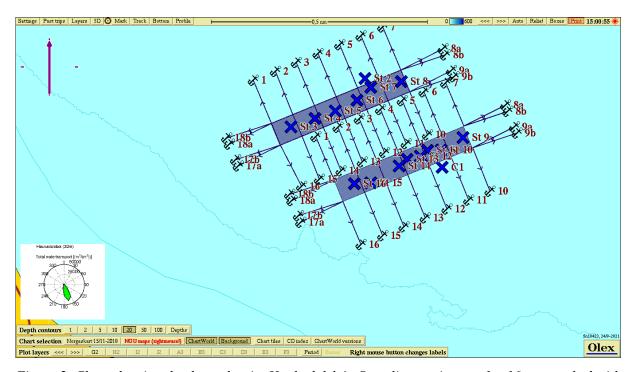


Figure 2. Chart showing depths at the site Haukadalsbót. Sampling stations st. 1-16 are marked with color codes that describe the condition according to NS 9410:2016, chapter 7.11. Color codes: Blue = very good condition, green = good condition, yellow = bad condition, red = very bad condition.

Table 4. Placement and depth of the sampling stations in the B-survey.

Station number	North	Vest	Depth (m)
St 1	65°53.279	23°35.446	34
St 2	65°53.483	23°35.884	34
St 3	65°53.372	23°36.302	31
St 4	65°53.391	23°36.166	32
St 5	65°53.409	23°36.051	32
St 6	65°53.433	23°35.928	33
St 7	65°53.463	23°35.850	34
St 8	65°53.476	23°35.678	35
St 9	65°53.347	23°35.329	35
St 10	65°53.319	23°35.451	35
St 11	65°53.318	23°35.529	34
St 12	65°53.304	23°35.570	33
St 13	65°53.297	23°35.649	32
St 14	65°53.282	23°35.691	31
St 15	65°53.243	23°35.851	31
St 16	65°53.241	23°35.943	29

4 Results

Results for the different parameters are given in Table 5. The overall site condition is 1 «very good». The status for group II (pH/Eh) was 1 «very good», status group III parameters (sensory) was 1 «very good» and average group II + III parameters is status 1 «very good». A complete filled sampling sheet with calculations for each parameter is attached in appendix.

Table 5. Results from the classifications of the local impact zone of the fish farm.

Parameter	Condition
Group II - parameters (pH/Eh)	1
Group III – parameters, (sensory)	1
Group II + III – parameters (mean value)	1
Site condition	1

There were collected valid sediment samples at all the sixteen sampling stations. This indicates that in general there is soft bottom in the local impact zone. The sediment type consisted mainly of clay in the whole farming area. For the group II parameters (pH/Eh), all sixteen stations had conditions 1 «very good». For sensory parameters (group III) fifteen stations had condition 1 «very good» and one station had condition 2 «good». For combined parameters II and III (pH/redox and sensory) all sixteen stations had status 1 «very good». Some faeces were visible at three stations (st. 5, 9, 10 and 12). Animals where present in all the sixteen soft bottom samples mainly in the form of polychaetes.

5 Conclusion

Based on the criteria given in NS 9410:2016 the fish farming site has been assigned a site condition 1 «very good» at the date of sampling. A total of 17 grabs were taken with Van Veen grab (0,1 m²), divided on the 16 stations placed around the 12 cages that are operated at the Haukadalsbót site during the present production cycle.

For combined parameters II and III (pH/redox and sensory) all sixteen stations had status 1 «very good» and animals were present in all soft bottom samples. The sampled sediment at the sixteen stations indicates that there is in general soft bottom in the whole area. Overall, the results indicate relatively little organic load in the local impact zone at Haukadalsbót at max biomass sampling for the current generation farmed at the site. The previous B bottom survey at fallow period before putting the current generation into sea gave overall site condition 1 «very good».

The site is assigned a condition factor 1 "very good" according to calculations based on methodology described in NS 9410:2016 and sample sheet Table B.1 and B.2 (se chapter 7 Appendix).

6 References

Forskrift om drift av akvakulturanlegg (akvakulturdriftsforskriften) §§ 35 og 36.

Gunnarsson, S., 2020. Haukadalsbót, Arctic Sea Farm. B-bottom survey fallow period, March 2020. Akvaplan-niva AS report nr. 62024.B01.

Gustavsson, A. 2019. Arctic Sea Farm hf, measurement of spread current at Haudadalsbót fall 2019. Akvaplan-niva AS project nr. 61426.

ISO 5667-19:2004. Guidance on sampling of marine sediments.

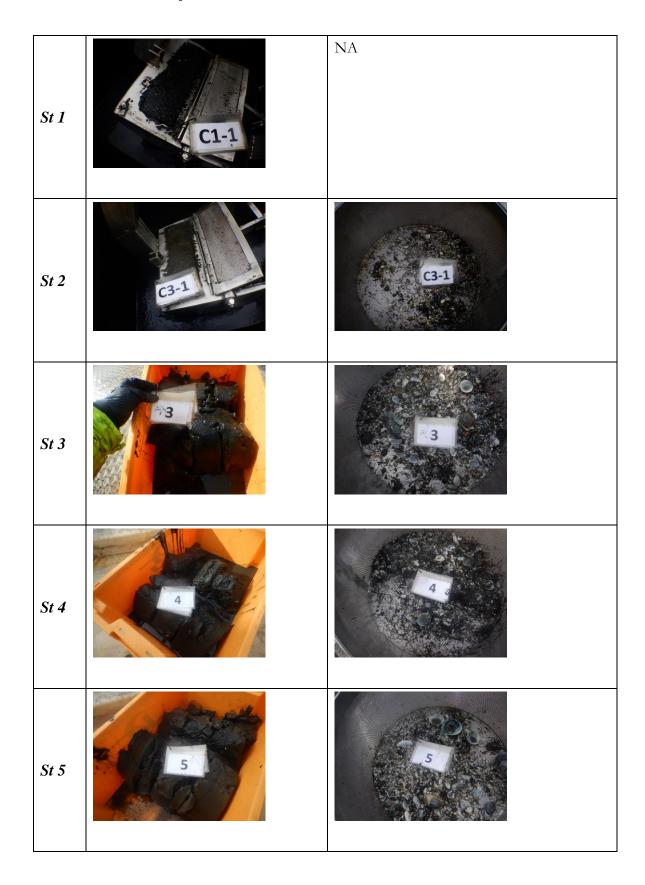
ISO 12878:2012. Environmental monitoring of the impacts from marine finfish farms on soft bottom.

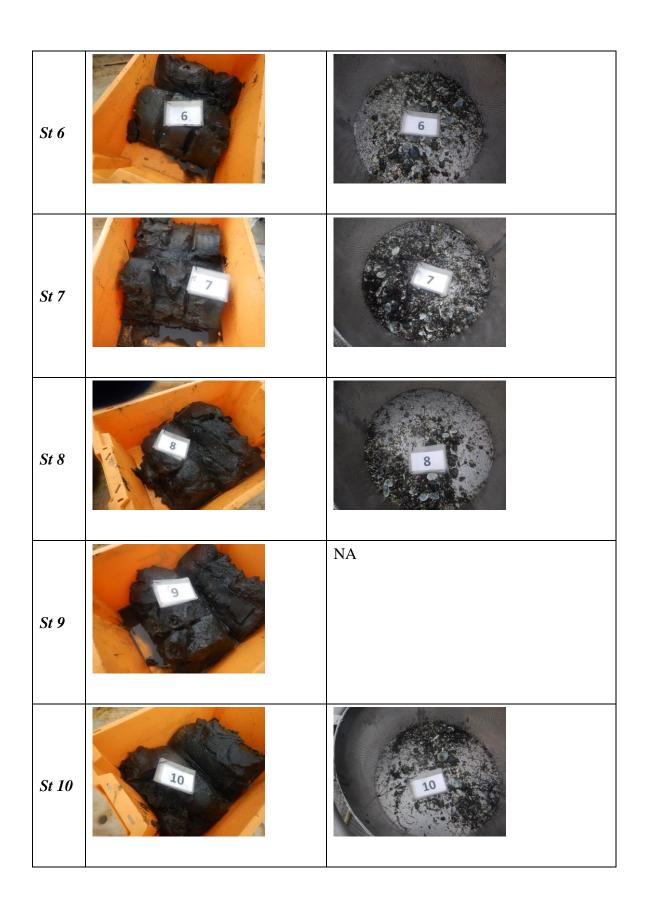
Norsk Standard NS 9410:2016. Miljøovervåking av bunnpåvirkning fra marine akvakulturanlegg.

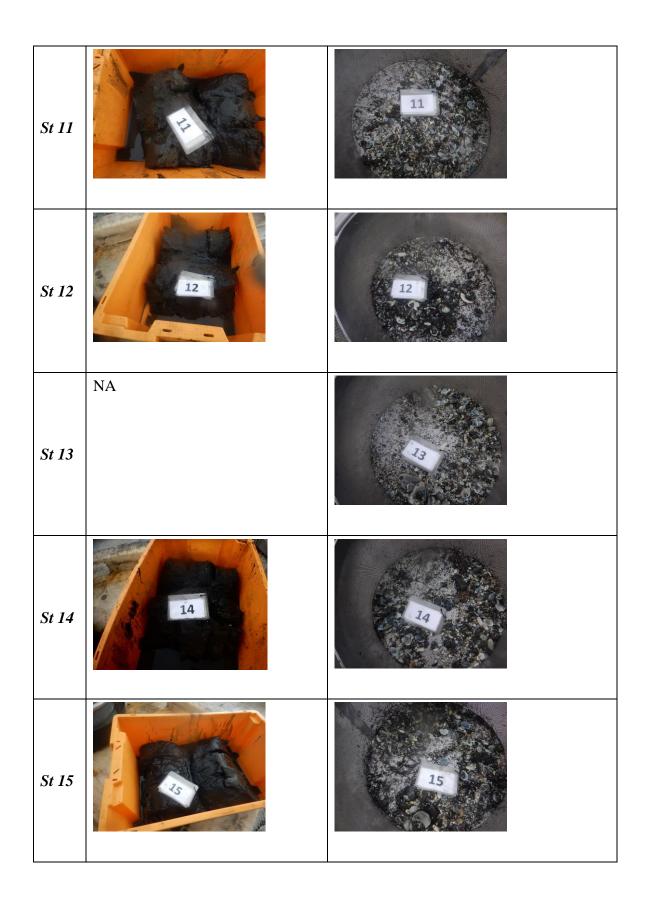
www.fiskeridir.no

7 Appendix:

7.1 Sheet (B.1 og B.2) NS 9410:2016


		Company	Arctic Sea Farm						Date:			26.08 2021
		Site:	Haukadalsbót Site no.:									
		Fieldworker:		Sno	rri Gunna	rsson						
Dara	ameter	Point		Sample number								
гана	ameter	1 Olik	1	2	3	4	5	6	7	8	9	10
1	Bottom ty	pe: S (soft) eller H (hard)	S	S	S	S	S	S	S	S	S	S
Anim	nals >	Yes (0) No (1)	0	0	0	0	0	0	0	0	0	0
рН		value	7,6	7,7	7,7	7,5	7,8	7,8	7,8	7,7	7,7	7,8
Eh (r	m\/)	ORP	-52	49	21	-111	-19	-35	-75	-137	-28	-4
L. ((,	plus ref. verdi	148	249	221	89	181	165	125	63	172	196
pH/E	≣h	from figure	0	0	0	1	0	0	0	1	0	0
		Status station	1	1	1	1	1	1	1	1	1	1
	Г		Buffer-temp		С	Sea temp		С	Sedime	ent temp		С
		pH sea	ORP sea		mV	Eh sea		mV	Reference	electrode	200,0	mV
Gas	bubbles	Yes (4) No (0)	0	0	0	0	0	0	0	0	0	0
Colo	our	Light/grey (0)	0	0	0		0		0	0	0	
		Brown/black (2)				2		2				2
		None (0)	0	0	0	0	0	0				
Sme	ell	Light (2)							2	2	2	2
		Strong (4)										
		Solid (0)	0	0	0	0	0	0	0	0	0	0
Cons	sistency	Soft (2)										
		Aqueous (4)										
		v < 1/4 (0)										
Grab (v)	b volume	1/4 < v < 3/4 (1)										
		v > 3/4 (2)	2	2	2	2	2	2	2	2	2	2
		t < 2 cm (0)	0	0	0	0	0	0	0	0	0	0
Thick slidg	kness of ge (t)	2 < t < 8 cm (1)										
	, ,,	t > 8 cm (2)										
		Sum	2,0	2,0	2,0	4,0	2,0	4,0	4,0	4,0	4,0	6,0
	ļ	Corrected ('*0,22) Status station	0,4	0,4	0,4	0,9	0,4	0,9	0,9	0,9	0,9	1,3 2
		Status station	<u> </u>	<u>'</u>	<u> </u>	<u> </u>			<u> </u>	<u> </u>		2
		Average group II & III	0,2	0,2	0,2	0,9	0,2	0,4	0,4	0,9	0,4	0,7
		Status station	1	1	1	1	1	1	1	1	1	1


			Arc	ctic Sea F	arm			Date:			26.08	2021			
r	Company: Site: Fieldworker:				Ha	aukadalsi	bót		1	Site no.:					•
F						ri Gunna			_				0		ļ
L			<u> </u>		0										
r F	arameter	Point					Sample r		1			1		Index	
г	Pottom t may 2 /4)11 /h*			11	12	13	14	15	16	17	18	19	20	S%	H%
Ļ	Bottom type: S (soft) or H (hard)			S	S	S	S	S	S					100	0
	Animals > Yes (0) No (1)			0	0	0	0	0	0						
р	Н	value		7,8	7,6	7,5	7,5	7,7	7,5						
	h (mV)	ORP		-26	-109	-135	-58	-116	-90						
ľ	.ii (iiiv)	plu	s ref. verdi	174	91	65	142	84	110						
p	H/Eh		om figure	0	1	1	0	1	0					0.	31
_		Status sta	tion	1	1	1	1	1	1						
		Status gro	up II	1	Buffer temp	0,0	C	Sea temp	0,0	С	Sediment temp	0,0	С		
		pH sea 0		ORP sea	0	mV	mV En sea		mV Reference		e electrode 2		mV		
0	Sas bubbles	Yes	(4) No (0)	0	0	0	0	0	0						
T			ht/grey (0)	0	0	0	0	0	0						
C	Colour		vn/black (2)	-	0	0	U	0	0						
F				0	0	0									
S	Smell		None (0)	0	0	0								-	
			_ight (2)				2	2	2					_	
H	Strong (4)												-		
	Consistency		Solid (0)	0	0	0	0	0	0						
	Consistency		Soft (2)											-	
F		Aq	ueous (4)												
	Grab volume	V	< 1/4 (0)												
	(v)	1/4 <	< v < 3/4 (1)											_	
F		V	> 3/4 (2)	2	2	2	2	2	2						
_	hickness of	t <	2 cm (0)	0	0	0	0	0	0						
	lidge (t)	2<1	t < 8 cm (1)												
L		t >	8 cm (2)												
		Corre	Sum	2,0	2,0	2,0	4,0	4,0	4,0						70
	l		ected (*0,22)	0,4	0,4	0,4	0,9	0,9	0,9					0,	72
			us group III		1		•								
			age group II & II		0,7	0,7	0,4	0,9	0,4					0,	51
			us station group II & III	1	1	1	1	1	1						
		pH/Eh]										
		Corr.sum		Status											
		Index Average													
			< 1,1	1											
			,1 - <2,1	2											
		2	,1 - <3,1 >3 1	3								64	atus site:		1
			≥3,1	4	ı							St	acus SITE:		
G	Grab ID		K3												


Sample scheme B.2												
Com		Arctic S	ea Farm		Date:			26.08 2021				
Site:			Hauka	dalsbót			Site	no.:	0			
Fieldworker:			Snorri Gunnarsson									
Sample number		1	2	3	4	5	6	7	8	9	10	
Depth (m)		34	34	31	32	32	33	34	35	35	35	
Number of trials		2	1	1	1	1	1	1	1	1	1	
Gas bubbles (in sample)		No	No	No	No	No	No	No	No	No	No	
	Clay	х	х	х	х	х	х	х	х	х	x	
	Silt											
Sediment type	Sand											
	Gravel											
	Shellsand											
Reef	12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
Rocky bottom (cobble	es, boulders)											
Echinodermata, coun	t									1		
Crustaceans, count												
Molluscs, count												
Polychaetes, count		>50	>50	>50	>100	>50	>100	>100	>100	>50	>100	
Other animals, count												
												
Beggiatoa												
Feed												
Faeces	Faeces					х				х	х	
Comments												
Grab		Area	Area [m²] 0,1				Gra	b ID	K3			
										page 3	of 4 pages	

Sample scheme B.2												
Com		Arctic S	ea Farm		Date:			26.08 2021				
Site:			Haukadalsbót				Site	no.:	0			
Fieldworker:			Snorri Gu	ınnarsson								
	AND THE PARTY OF T											
Sample number		11	12	13	14	15	16	17	18	19	20	
Depth (m)		34	33	32	31	31	29					
Number of trials		1	1	1	1	1	1					
Gas bubbles (in sample)		No	No	No	No	No	No					
	Clay	x	х	х	х	х	х					
	Silt											
Sediment type	Sand											
	Gravel											
	Shellsand											
Reef												
Rocky bottom (cobble	es, boulders)											
Echinodermata, coun	t											
Crustaceans, count												
Molluscs, count												
Polychaetes, count		>100	>100	>100	>100	>50	>20					
Other animals, count												
Beggiatoa												
Feed												
Faeces			х									
Comments												
Grab		Area	Area [m²] 0,1				Gra	b ID	К3			
Signature fieldworker:			1	1	v v							
		Smon	j German	verv	page 4 of 4					of 4 pages		
			-		16							

7.2 Pictures of samples at Haukadalsbót

7.3 Bottom topography and 3D view

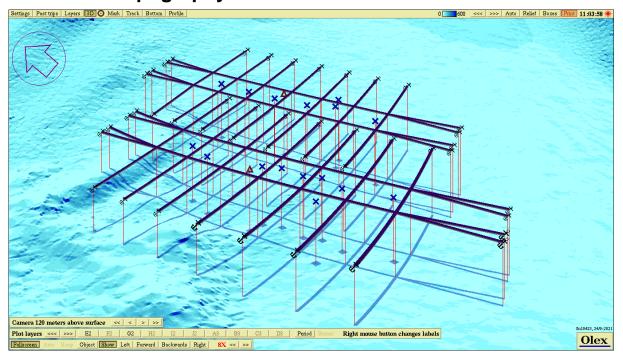


Figure 3. Showing bottom topography 3D at Haukadalsbót with each sampling station according to info in figure 2 and Table 3.